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Abstract 
 
Relying on few assumptions, I present a simple model which assists the decision of whether to replace a 
degrading system now, or wait.  While most optimal replacement-repair models provide guidance on the 
event, condition, or age of a system which dictates an optimal (usually expectation) replacement time, they 
all rely on knowledge about the hazard function.  In our case, the available models required more 
knowledge about the hazard function than we could determine, and our decision process requires 
simplicity.  However, even with almost no knowledge about the degradation behaviour, or severely limiting 
assumptions, we are able to provide decision makers with metrics which add assurance that a system should 
be replaced.  It can also be used to prioritize systems for replacement in cases of limited budget, even when 
we only know costs, age, and current rate of occurrence of failures.   

1. Background 

1.1 Brief Literature Reference 

There is a wealth of literature fitting under the general subject of optimal repair-replacement modelling.  
For excellent, yet dated, breakdowns of the literature in this subject area, see (Valdez-Florez & Feldman, 
1989), (Pierskalla & Voelker, 1976).  Generally speaking, the literature on this subject assumes some 
functional characteristic about the degradation, or rather the increase in maintenance cost over time.  They 
assume that the system or component has a hazard rate whose function is known, and usually it is strictly 
non-decreasing, except where they show there is no optimal replacement point.   
While each paper is an important extension of the state of the art, it is my belief that these assumptions 
are often motivated by easy math, and the need to publish; not by a particular application.  Mostly, the 
papers published as of late fit into one of these categories:   
1. extensions into more restrictive assumptions which improve optimality, but require more information 

about the component or system; or 
2. expansions of condition versus event versus age replacement, or some mix, increasing the complexity 

of the decision or maintenance processes.   
For an example of the former case, I point to (Deshpande & Singh, 1995).  For an example of the latter 
case, see (Bagai & Jain, 1994).  However, while these works and the many others not sited are all 
important, my experience has shown that they are not easy to apply because they require more 
information, or are complex.  Where there exist the largest opportunities for maintenance optimization, 
unfortunately analyst resources are lacking or missing, and the important decisions are made by engineers 
who define, and therefore must comprehend fully, the decision process.     
 
1.2 Our motivation 

As I’ve already indicated, our situation does not allow easy application of the existing models.  
Traditional condition- and event-based replacements do not apply well to our case because our system is 
complex, repairs are inexpensive relative to replacement, information on repairs is kept for little more 
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than one cycle, and the dominating degradation is slow; it is difficult to know when the right event or 
condition has taken place.  Age replacement applies to our case better, but not well enough. A strictly 
age-based replacement policy does not apply well because of the high degree of variation in degradation, 
and therefore repairs. In addition, replacement decisions are made by looking at statistics on a very large 
set of systems, and engineers search for opportunities to spend predetermined budget.  Conditions, events, 
and age are fuzzy at best. And generally, the available models do not help because we do not know 
enough about the hazard function being generated by degradation.   
Instead, I’ve had to develop a simplified approach, solve for the age of optimal replacement under a 
certain set of assumptions, then invert to relax assumptions.  This approach allows us to take into account 
what we do know about a particular system being investigated, even when that information is minimal.  
The end result is a decision support metric based on optimal replacement age, as defined by a degradation 
condition.  While age is initially fuzzy, it can be determined with sufficient certainty.   
1.3 Nomenclature 

C  Cost per unit of time, or time average cost 
1C  Cost of a minimal repair 

2C  Cost of a replacement 
M  Change over time, or slope, of the rate of occurrence of failures, over time 
T  Age of the system at time of study 

1T  Age at which degradation begins in the system 

2T  Age at which the system is replaced 
*

2T  Optimal age for system replacement 

CT1  Given the system is at the optimal age for replacement, this is the minimum  such that the  1T
 system should have been replaced.   

bY  Rate of occurrence of failures which are basic, not due to degradation failure modes 

dY  Rate of occurrence of failures due to degradation 
P  probability that the optimal replacement time has occurred by the age of the system, or the  
 proportion of the timeline (0, T ) over which  would dictate optimal replacement has  1T
 occurred.   
cycle The period of time over which repair patterns repeat.  In our application, this is 12 months, and  
 represents that seasonality effects on repair, particularly due to the degradation failure mode. 

2. Model 

In this application, we have very few assumptions we can validly make.  Here is what we know:   
1. The statistical-average cost of a minimal repair , and the expert-anticipated (not a statistical-

average) cost of replacement .  
1C

2C
2. The age of the system or subsystem being considered for replacement T . 
3. The rate of occurrence of failures for the last cycle of time, but separated into degradation , and 

non-degradation . 
dY

bY
The first two items we find through investigation, inspection, and from basic business metrics. We can 
determine the occurrence rate of each failure category for a particular system through repair records over 



the last cycle.  Due to the cyclical effects on failure, one cycle of data is not sufficient for developing the 
hazard functions.  So we must make one key assumption: 

Assumption – At repair, the system or subsystem is inspected such that the cause of failure is 
categorized as due to degradation, or an alternate cause; and this information is reliable.  
Therefore, if degradation has occurred over the last cycle, we know it began some time in (0, T ). 
Once it has occurred, degradation will continue until replaced. Without any additional knowledge, 
our minimal assumption is that the degradation is linearly increasing in time once it begins.    

 This leads us to the following process: 
• We take the current cycle of repair information, and determine both  & .   dY bY
• We use this information, with the age T , and costs  & , to determine the optimal replacement 

age  conditional on the assumed beginning degradation time , . 
1C 2C

*
2T 1T 1

*
2 | TT

• Then we take available information on the likelihood of each possible value of  to determine the 
probability that the optimal replacement time has occurred for this system or subsystem, 

1T
P .   

The rest of this paper outlines the equations used to follow this process.  
 
2.1 Optimal replacement age 

For a given M , the total cost per unit time is 
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2.2 Unknown rate of change in degradation repair over time 

As we do not actually know the rate of change in degradation, we estimate it with M , defined to be 
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. At this point, we need to demonstrate the conditions in which one 

root is in our range of interest, and the replacement decisions which result.  That exercise is for future 
work, as it would not fit within the limits of this extended abstract.   
 
2.3 Likelihood of Valid Replacement 

However, it is simple and effective to place the equation for  into a spreadsheet, and show the values 
of  , with , for which for any particular case.  By taking a fine enough granularity 
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for , we can approximate the value of 1T P  by adding up the number of times , and dividing 

by the total number of events.  
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3. Conclusions 

Even though we do not know the hazard function, we know enough about the degradation mechanisms of 
our system to say that once degradation had begun, it will continue.  If we make the simplest assumption 
that the degradation is linear in nature, we can define the optimal age of replacement conditional on the 
age at which the degradation begins. We can further use this result to relax the condition, and find the 
likelihood that the optimal replacement time has come.  Knowing that the actual optimal condition is 
sensitive to the hazard function, our results are still useful as our metric P . 
In this last step, we make an assumption yet undocumented: the likelihood that the degradation began at 

 is uniform.  Realistically, with the knowledge given in (Rupe, 1999), we could use the distribution of 
 to determine 

1T

1T P , and improving this metric.   
Another yet undocumented assumption common to almost all replacement optimization modelling 
exercises including this one is that a replacement would behave the same as the original.  In reality, the 
expected behaviour of the replacing equipment may be better or worse depending on many factors.  In 
that case, we must adapt these models much in the way technology replacement is considered in (Rupe, 
2000).  Until that is considered, the metric P  as defined here is not useful.   
The metric P  becomes a comparison risk estimate for system replacement, useful by engineers who have 
a limited budget, and must make the best financial decision for the company.   
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